Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 295: 154222, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484685

RESUMO

Plant hormones such as ethylene (ET) and salicylic acid (SA) have an elementary role in the regulation of ER stress and unfolded protein response (UPR) in plants via modulating defence responses or inducing oxidative stress. Chloroplasts can be sources and targets of reactive oxygen species (ROS) that affect photosynthetic efficiency, which has not been investigated under tunicamycin (Tm)-induced ER stress. In this study, the direct and indirect effects of Tm on chloroplastic ROS production were first investigated in leaves of wild-type tomato (Solanum lycopersicum L.) plants. Secondly changes in activities of photosystem II and I were analysed under Tm exposure and after application of the chemical chaperone 4-phenylbutyrate (PBA) in different genotypes, focusing on the regulatory role of SA and ET Tm treatments significantly but indirectly induced ROS production in tomato leaves and in parallel it decreased the effective quantum yield of PSII [Y(II)] and PSI [Y(I)], as well as the photochemical quenching coefficient (qP) and the quantum yield of non-photochemical energy dissipation in PSI due to acceptor-side limitation [Y(NA)]. At the same time, Tm increased non-photochemical quenching (NPQ) and cyclic electron flow (CEF) in tomato leaves after 24 h. However, the photosynthetic activity of the SA hydroxylase-overexpressing NahG tomato plants was more severely affected by Tm as compared to wild-type and ET-insensitive Never ripe (Nr) plants. These results suggest the protective role of SA in the regulation of photosynthetic activity contributing to UPR and the survival of plants under ER stress. Interestingly, the activation of photoprotective mechanisms by NPQ was independent of SA but dependent on active ET signalling under ER stress, whereas CEF was reduced by ET due to its higher ratio in Nr plants.


Assuntos
Solanum lycopersicum , Tunicamicina/farmacologia , Tunicamicina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Fotossíntese/fisiologia , Etilenos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Luz
2.
J Plant Physiol ; 287: 154041, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37339571

RESUMO

Plant defence responses induced by the bacterial elicitor flg22 are highly dependent on phytohormones, including gaseous ethylene (ET). While the regulatory role of ET in local defence responses to flg22 exposure has been demonstrated, its contribution to the induction of systemic responses is not clearly understood. For this consideration, we examined the effects of different ET modulators on the flg22-induced local and systemic defence progression. In our experiments, ET biosynthesis inhibitor aminoethoxyvinyl glycine (AVG) or ET receptor blocker silver thiosulphate (STS) were applied 1 h before flg22 treatments and 1 h later the rapid local and systemic responses were detected in the leaves of intact tomato plants (Solanum lycopersicum L.). Based on our results, AVG not only diminished the flg22-induced ET accumulation locally, but also in the younger leaves confirming the role of ET in the whole-plant expanding defence progression. This increase in ET emission was accompanied by increased local expression of SlACO1, which was reduced by AVG and STS. Local ET biosynthesis upon flg22 treatment was shown to positively regulate local and systemic superoxide (O2.-) and hydrogen peroxide (H2O2) production, which in turn could contribute to ET accumulation in younger leaves. Confirming the role of ET in flg22-induced rapid defence responses, application of AVG reduced local and systemic ET, O2.- and H2O2 production, whereas STS reduced it primarily in the younger leaves. Interestingly, in addition to flg22, AVG and STS induced stomatal closure alone at whole-plant level, however in the case of combined treatments together with flg22 both ET modulators reduced the rate of stomatal closure in the older- and younger leaves as well. These results demonstrate that both local and systemic ET production in sufficient amounts and active ET signalling are essential for the development of flg22-induced rapid local and systemic defence responses.


Assuntos
Solanum lycopersicum , Peróxido de Hidrogênio/metabolismo , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
3.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361121

RESUMO

The first line of plant defence responses against pathogens can be induced by the bacterial flg22 and can be dependent on various external and internal factors. Here, we firstly studied the effects of daytime and ethylene (ET) using Never ripe (Nr) mutants in the local and systemic defence responses of intact tomato plants after flg22 treatments. Flg22 was applied in the afternoon and at night and rapid reactions were detected. The production of hydrogen peroxide and nitric oxide was induced by flg22 locally, while superoxide was induced systemically, in wild type plants in the light period, but all remained lower at night and in Nr leaves. Flg22 elevated, locally, the ET, jasmonic acid (JA) and salicylic acid (SA) levels in the light period; these levels did not change significantly at night. Expression of Pathogenesis-related 1 (PR1), Ethylene response factor 1 (ERF1) and Defensin (DEF) showed also daytime- and ET-dependent changes. Enhanced ERF1 and DEF expression and stomatal closure were also observable in systemic leaves of wild type plants in the light. These data demonstrate that early biotic signalling in flg22-treated leaves and distal ones is an ET-dependent process and it is also determined by the time of day and inhibited in the early night phase.


Assuntos
Ritmo Circadiano , Etilenos/farmacologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/imunologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA